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Poisson's theory for holonornic conservative systems is shown to apply partially to non-holonomie systems. © 1998 Elsevier Science 
Ltd. All fights reserved. 

Existing methods of inte$Tating the equations of non-holonomic dynamics are based on the laws of conservation 
[1], reducing the order of  the equations [2], Noether's theorem [3, 4], an extension of  the Hamilton-Jacobi method 
[5], a field method [6, 7], the method of invariant measure [8], etc. 

Poisson's theory for holonomic conservative systems makes use of the fact that the Hamiltonian equations possess 
an algebraic structure, whence it follows, in particular, that the Poisson bracket can be introduced for non-holonomic 
systems and Poisson's theory can be partly extended to them. 

1. Let the position of  a mechanical system be defined by the generalized coordinates qs (s = 1 . . . . .  n) and the 
system is under ideal non-holonomic constraints (as stated by Chetayev) 

fl~(qs,ils,,)=o, 13=1 ..... g (1.1) 

We write the equations; of  motion of the system in the form 

d O T  OT =Q# + As ' As = As(q, i l , t )= ~l~.l~ ~: dqs (1.2) 
dt Oils Oqs " 

Let  

Q.s =Qs + As =Qs +Q's; Qs = -  
OU d OU 

Oqs dt Oils 

Then Eqs (1.2) take the form 

d OL OL t t  

- - - Q ' ~ ,  L = T + U  (1.3) 
dt Oil s Oqs 

These equations can be used to describe a holonomic system with n degrees of freedom, with generalized forces 
Q~s and Lagrange function L. If  the initial conditions satisfy Eqs (1.1), the solution of  Eq. (1.3) gives the motion 
of the non-holonomic system (1.1), (1.2) [9]. 

2. We will consider the algebraic structure of Eqs (1.3). Let 

OL 
Ps = "g":'. , H = ~,Psils - L (2.1) 

aqs s=l 

Qs '=- ~, f~st OIt f~s* =diag(nll  ..... f~..) (2.2) 
k=l OPk ' 

Equations (1.3) take the form 

O H  
tilx - slXV ~ = 0, ~t,v= 1 ..... 2n 0a v (2.3) 
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ala = I qla' ~t = 1 ..... n 
[Pla-n, I~=n+l  ..... 2n' SlaV=r'°laV+TlaV 

io-,-  io-o- ! 
03l~v= -Inxn Onxn T~V= Onxn (-f~)nxn 

Summation over repeated indices is carried out everywhere. 
We will represent the derivative with respect to time of a function A(a g) in the form of the algebraic product 

ji, b A  slav bH a a o H (2.4) 
= bag ba--'g = 

This product possesses the following properties 

A o ( B + C ) = A o B + A o C ,  ( A + B ) o C = A o C + B o C  

(0.4) o B = A o (czB) = a(A o B) 

Hence it possesses an intrinsic algebraic structure. It does not, however, provide a Lie algebra in the general 
c a s e .  

We define the new product 

[ A,B]A=A o B -  eo A (2.5) 

which is skew-symmetric and satisfies the Jacobi identity 

[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0 

Hence the equations of motion (1.3) possess a structure for which there is a Lie algebra. In the special case 
where T pv = 0, the equations of motion (1.3) possess the algebraic structure of a Lie algebra, that is, they are 
Hamiltonian. 

3. We now integrate the equations of motion (1.3) on the basis of their algebraic structure and Poisson's 
theory. Suppose that I(a g, t) = const is the first integral of Eqs (2.3). Then, using definition (2.4), we have the 
identity 

bl 31 -lay bH =b/+loH=0 (3.1) 
b-7+ ba - -ya  bav ~t 

which is the generalized Poisson condition for the integral of Eqs (2.3). 
Substituting I = H into (3.1) we obtain 

If 

~H + H  bH bH -gv bH _ bH +~. ~f'~'-P qs 
° H = ' ~ ' + ~ a p  l b a Y - "  ~"  I~oq s (3.2) 

bH 0, bfl3 
b---t- = ~qs = ;tskf~f[~ (3.3) 

the right-hand side of Eq. (3.2) vanishes. We thus have the following theorem [10]. 

Theorem 1. If the Hamilton function H is independent of time and the equations of non-holonomic constraints 
(1.1) are homogeneous with respect to generalized velocities, then the Hamilton function will be the first integral 
of system (2.3). 

"Ihldng the partial derivative with respect to t of both sides of Eq. (3.1) in the case where S ~v and H are independent 
of t, we obtain 

g(T,)+¥ "n=o 

A similar equation holds for b2I/bt 2. ~I/bt  3 . . . . .  We thus have the following theorem. 

Theorem 2. If  system (2.3) has a first integral which depends on time, and H and Spv are independent of time, 
2 then bI/bt, b "I/i~t z, ~3t/bt3... are first integrals of system (2.3). 



Algebraic  s t ructure and Poisson's  theory for  non-ho lonomic  systems 157 

The next theorem can be proved in the same way by taking the partial derivative with respect to at' of  both sides 
of Eq. (3.1). 

Theorem 3. If  system (2.3) has a first integral which contains a p, and H and S ~v do not contain at', then OI/Oa a, 
02I/Oa r2, 03I/3d '3 are first integrals of  system (2.3). 

In the general case, the product (2.4) does not form a Poisson bracket or generalized Poisson bracket and Poisson's 
theory cannot be applied to system (2.3) in the general case. 

4. Examples of  the use of  Theorems 1-3. In Appell's example the Lagrange function and constraint equation have 
the form 

L = ~m(i l  2 +ii~ +il3)-mgq3. 

Equations (1.3) have the form 

t ~  l =-~C2¢~301, mq 2 ---~C2q3¢~2, 

=mgl(q? +0 2 +C2q 2) 

We have 

C 2  • 2 :.2 --2 q~ = ~ + q 2  

ps=~Ll~ l s ,  s-- 1,2,3 

3 l 2 
H = ~, P, ils - L = ~ m ( P j  +p2 +p~)+mgq3 

8=| 

Then, using identity (2.2), we obtain 

~ll='rlC2p3, ta22=rlC2P3, f133=-vlC4/~ 

We put n = 3 in Eqs (2.3). It follows from Theorem 1 that the Hamilton function H will be a first integral 

H = 7 m  {(34)2 +(aS) 2 +(a6)2}+raga 3 

Note that this system has the first integral 

11 = {a j _ (a 4 / a 5 )a 2 }2 = const 

and H and S "v do not contain a I, a 2. By Theorem 3, we obtain the first three integrals 

! 2 = 211 ! 031 -- (a ! - ( a  4 [a 5 )a 2 } = coftst 

13 = 011 [ 0a 2 = 2{a I - (a 4 ] a s )a 2 }(-a 4 / a s ) = const 

14 = 0211 / 0al0a 2 = -2a  4 la  5 = const 

We note that this system has the first integral 

1 s = ( a  6+~t) 2=const,  ~ = g l ( C  2+1) 

and H and S "v are independent of t. Using Theorem 2, we obtain the first integral 

! 6 = 01 s / at = 2 ( 0  6 + ~ t ) ~  = const 

In the example of Novoselev [9], the Lagrange function and equation of non-hoionomic constraint have the form 

L =  J~2 ql 

The equations of motion (1.3) give 

d SL" 
at aq; 

f = il! +bCq2 -bq2 + t = O 

0L' 
--=0, s = l , 2  
Oqs 
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L" = L + l  ili arctgbt + ~ b  ~/2 ln(l + b2t 2 ) 

In Eqs (2.3) we put n = 2, where 

al  ql, a2 q2, a3 . 1 = = = Pl = ql +'~arctgbt 

a4 = P2 = q2 +---~ in(l +b2t 2 ) 

1 1 2 1 
H ='~[Pi --~arctgbt] +~[  p2--~b ln(l +b2t2 )] 2 

Poisson's theory can obviously be applied to this system. 
Financial support  for this research was provided by the Chinese Foundation for the Natural Sciences. 
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