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Poisson’s theory for holonomic conservative systems is shown to apply partially to non-holonomic systems. © 1998 Elsevier Science
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Existing methods of integrating the equations of non-holonomic dynamics are based on the laws of conservation
[1], reducing the order of the equations [2], Noether’s theorem [3, 4], an extension of the Hamilton—Jacobi method
[5], a field method [6, 7], the method of invariant measure [8], etc.

Poisson’s theory for holonomic conservative systems makes use of the fact that the Hamiltonian equations possess
an algebraic structure, whence it follows, in particular, that the Poisson bracket can be introduced for non-holonomic
systems and Poisson’s theory can be partly extended to them.

1. Let the position of a mechanical system be defined by the generalized coordinates g; (s = 1, ..., n) and the
system is under ideal non-holonomic constraints (as stated by Chetayev)
fB(q_\wq.svt):Oy B=19--~,g (1.1)

We write the equations of motion of the system in the form

L 2 Ag, Ay =A(q.4.)=3 A 1.2
@35 9. Qs +A, sg.q.0= f ﬁaqs 1.2)
Let
oU d U
A =0 —____
Q=0 +A; =0 +0 O o 4130
Then Egs (1.2) take the form
d oL dL
4oL oL _ . L=T+U (1.3)

These equations can be used to describe a holonomic system with # degrees of freedom, with generalized forces
(f and Lagrange function L. If the initial conditions satisfy Eqs (1.1), the solution of Eq. (1.3) gives the motion
of the non-holonomic system (1.1), (1.2) [9].

2. We will consider the algebraic structure of Eqs (1.3). Let

oL ho
pPs = a—v H=3pgq,-L (21)
qs s=1
oH .
‘= - Z st a N st =dlag(Q“,...,an) (2.2)
Equations (1.3) take the form
. oH
B _ qhv =
a" - 2%’ =0, p,v=1,..,2n (2.3)
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q,, MK=1l..n
n_JTH MY _ BV v
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oM = Onxn  Inxn

Tuv=l'0nxn Onxn M
Onxn (_Qkk)nxn
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Summation over repeated indices is carried out everywhere.
We will represent the derivative with respect to time of a function A(a") in the form of the algebraic product

oA oH a
— SV L84.H 24
da* da"
This product possesses the following properties

A=

Ae(B+C)=AoB+AoC, (A+B)oC=AoC+BeC
(0A)eB=Ao(aB)=0(A°B)

Hence it possesses an intrinsic algebraic structure. It does not, however, provide a Lie algebra in the general
case.
We define the new product

[A,BJAA-B-BoA 2.5)
which is skew-symmetric and satisfies the Jacobi identity
[A,[B,CI1 +[B,[C, A]] +[C, [A, B]] =0

Hence the equations of motion (1.3) possess a structure for which there is a Lie algebra. In the special case
where T = 0, the equations of motion (1.3) possess the algebraic structure of a Lie algebra, that is, they are
Hamiltonian.

3. We now integrate the equations of motion (1.3) on the basis of their algebraic structure and Poisson’s
theory. Suppose that I(a*, f) = const is the first integral of Eqs (2.3). Then, using definition (2.4), we have the
identity

A, A g OH A

—_ =—+JoH=0 .
at  oga* da"’ 'at+ (3-1)

which is the generalized Poisson condition for the integral of Egs (2.3).
Substituting / = H into (3.1) we obtain

oH oH oH ., 0H oH ., 9 .
— tHoH = —— e THY =—4Ap — 3.2
ar " o 3ah . dav o Bag X G2
If
oH oy .
5% ‘&I:=qskpf[5 (3.3)

the right-hand side of Eq. (3.2) vanishes. We thus have the following theorem [10].

Theorem 1. If the Hamilton function H is independent of time and the equations of non-holonomic constraints
(1.1) are homogeneous with respect to generalized velocities, then the Hamilton function will be the first integral
of system (2.3).

Taking the partial derivative with respect to z of both sides of Eq. (3.1) in the case where $*¥ and H are independent
of t, we obtain

a(al) al
.87(5)"-50]1_0

A similar equation holds for 92/a¢%. 3°I/aF, . . . . We thus have the following theorem.

Theorem 2. If system (2.3) has a first integral which depends on time, and H and $*” are independent of time,
then aI/3t, 9XI/at%, 9t/or° . . . are first integrals of system (2.3).
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The next theorem can be proved in the same way by taking the partial derivative with respect to &’ of both sides
of Eq. (3.1).

Theorem 3. If system (2.3) has a first integral which contains &*, and H and $*¥ do not contain &, then 9J/3a”,
H/oa??, 31/3a”® are first integrals of system (2.3).

In the general case, the product (2.4) does not form a Poisson bracket or generalized Poisson bracket and Poisson’s
theory cannot be applied to system (2.3) in the general case.

4. Examples of the use of Theorems 1-3. In Appell’s example the Lagrange function and constraint equation have
the form

L=Ym@G} +43 +43)-mgqs. €24} =4} +43
Equations (1.3) have the form
my =-EC%q43¢1, miy =~§C%434p. mijy =-mg+ECH4]
E=mgl (g} +43 +C2D)
We have
ps=dlidq,, s=1,2,3

3 1
H=3% psqs—L='i;(P|2+P§+P§)+mgq3

s=1
Then, using identity (2.2), we obtain
Q =nC?py, Op=nClpy. Q3 =-nC'ps
n=m’g/(p} +p3 +C*p})
We put n = 3 in Egs (2.3). It follows from Theorem 1 that the Hamilton function H will be a first integral

1
H =?n:{(a4)2 +(a*)? +(a®)?} + mga® = h = const

Note that this system has the first integral
L= {al ~-(a4 1a° )¢12}2 = const
and H and S™ do not contain a!, a>. By Theorem 3, we obtain the first three integrals
1, =91, 13" ={a' ~(a*/4°)a®} = const
Iy =31, /3a* = 2(a' - (a* 1 a*)a’}(-a* / a®) = const
I, =9%1,/3a'3a* = -2a* 1 a° = const
We note that this system has the first integral
15 =(a® +{n? =const, {=g/(C?+1)
and H and $*" are independent of . Using Theorem 2, we obtain the first integral
1 =dls /3t = 2(a® + (1)l = const
In the example of Novoselev [9], the Lagrange function and equation of non-holonomic constraint have the form
L=Yal +d3). f=d+btg; ~bg +1=0

The equations of motion (1.3) give

d oL° oL’
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, 1. 1. 2,2
L'=L+— ctgbt +—q, n(1+ b
p J1acctgbr+ -4y | ( )
In Eqs (2.3) we put n = 2, where
|
a'=q, a’=q;, @’ =p =g+ arcigh

ot =py=dy +ﬁm(1+b2¢2)

H-—l—[ —larct bt]2 +—!-[ _—]—ln(l+b212)]2
2 f 41 b 4 3 P2 25

Poisson’s theory can obviously be applied to this system.
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